If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)-6x-160=0
a = 1; b = -6; c = -160;
Δ = b2-4ac
Δ = -62-4·1·(-160)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-26}{2*1}=\frac{-20}{2} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+26}{2*1}=\frac{32}{2} =16 $
| -2x+3=-8 | | 17/8=6/x | | (1 9)-x=272/3 | | (1.5x^2)-3x-80=0 | | -3y-6(9y-6)=3-4(9-y) | | 13x-3(3x-1)=3x-12 | | -3p-5(5-2p)=4(p-2)-5 | | 4y-3=2y=27 | | (2x^2)+5x-250=0 | | 9k+7=9-8 | | 9k+7K=9-8 | | 3y/2+y/6=35/3 | | (9-z)(5z-3)=0 | | 64-48÷6×4+8=x | | 3x+2/12-3x+4/24=3/8 | | 3x^=108 | | -7+3x=62 | | -7+3x=41 | | 3/10x-4/5=-2 | | n=123n+2 | | 3(x+1)=3(x+3)+x-3 | | 2/5=5x+15/2x+6 | | -4(2x+5)-2x=3(11-4x)+3x | | 7(2x)+3x=100 | | 4(2x-10)-5(x-3)=5-6x | | 2x-66=58 | | 6x+(-3x)=15-2x | | x/2+x/5=7/1 | | 6x-7x+1=0 | | 2x+3/5=5 | | g-12=-4 | | g-12=4 |